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Configurations of protein-free DNA miniplasmids are calculated with the effects of impenetrability and
self-contact forces taken into account by using exact solutions of Kirchhoff's equations of equilibrium for
elastic rods of circular cross section. Bifurcation diagrams are presented as graphs of excass, lvegsus
writhe, W, and the stability criteria derived in paper | of this series are employed in a search for regions of such
diagrams that correspond to configurations that are stable, in the sense that they give local minima to elastic
energy. Primary bifurcation branches that originate at circular configurations are composed of configurations
with D, symmetry (n=2,3, ...). Among theesults obtained are the following) There are configurations
with C, symmetry forming secondary bifurcation branches which emerge from the primary brancmwith
=3, and bifurcation of such secondary branches gives rise to tertiary branches of configurations without
symmetry.(ii) Whether or not self-contact occurs, a noncircular configuration in the primary branctmwith
=2, called branchy, is stable when for it the derivativeA £/dVV, computed along that branch, is strictly
positive. (i ) For configurations not im, the conditiondA £/d»V>0 is not sufficient for stability; in fact, each
nonplanar contact-free configuration that is in a branch other éghiarunstable. A rule relating the number of
points of self-contact and the occurrence of intervals of such contact to the magnitdde @fhich in paper
I was found to hold for segments of DNA subject to strong anchoring end conditions, is here observed to hold
for computed configurations of protein-free miniplasmids.

PACS numbes): 87.10+e, 46.70.Hg, 02.46:k, 46.32:+Xx

I. INTRODUCTION

L wb [t 2
xpB=§f0 k(s)2ds, wT=7f0 AQ(s)%ds,  (2)

In paper | of this series on the theory of the elastic rod

model for DNA[1], we derived several criteria for the elastic

stability of a calculated equilibrium configuration of a DNA Where

segment that is either a plasmide., a closed ringor a

linear segment subject to strong anchoring end conditions.

w=CI/A. (3

We here apply the criteria to a classical problem: analysis of

the stability of supercoiled configurations of protein-free

plasmids.(See, e.g., Le Brdi2] and Jlicher[3].)

In earlier studies of the elastic rod modédf. Refs.
[4—6]), explicit (and exact solutions of Kirchhoff's equa-

Our results hold for the theory of the commonly em- tions were employed to calculate equilibrium configurations

ployed elastic rod model which treats a DNA segment as iriree from points of self-contact. The configurations and bi-
intrinsically straight, homogeneous, inextensible rod withfurcation diagrams shown here and in paper | were calcu-
elastic properties that are characterized by two elastic corlated using generalizations of those explicit solutions for

stants, the flexural rigidityA and the torsional rigidityC.

cases in which excluded volume effects and forces arising

Hence, the configuratiof of a DNA segment is determined from self-contact must be taken into account.

once one has specified the cu@eepresenting the duplex

axis and the densit\() of the excess twist abowd. The

We are concerned with plasmids, i.e., segments for which
both DNA strands form closed curves. The excess link in a

elastic energyl of the segment is the sum of a bending plasmid, AL, is a topological constant, which, by a now

energy Vg which depends on the curvatureof C and a
twisting energyW + which depends oi(). Thus,

\I,:\I,B+\I,T’ (1)

and, whenW, W5, and W are expressed in units &/L
with L the length of the segment,

*Electronic address: bcoleman@stokes.rutgers.edu
"Electronic address: swigon@jove.rutgers.edu
*Electronic address: tobias@rutchem.rutgers.edu

1063-651X/2000/6(1)/75912)/$15.00 PRE 61

familiar result[7,8], obeys the equation
AL=W+AT, (4)

in which,

1 (L
AT=—J AQds, (5
2 0

andW is the writhe of the closed cur«& There are several
equivalent definitions of writhe; one, due to Ful[&, was
mentioned in paper |. For a sufficiently smooth cué/ene
may write (see, e.g., the introductory survgi0])
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1 (L [Lt(s)Xt(s*)-[X(S)—X(s*)] integer, called the self-linkcf. Refs.[7] and[12]). In the
w= EJ f X(5) —X(s")° dsds’, (6) cases considered here, that integer is not difficult to evaluate
0 (for details see Refg6] and[11]).
As in paper |, we here call equilibrium configuratic’
stableif it gives a strict local minimum toV in the class of
configurations compatible with the constraints. In other

# . . . . .
We confine our attention to knot-free plasmids which are'V0rds, Z” is stable if and only if it has a neighborhood

# . - -
modeled as elastic, but impenetrable, closed fods ringy ~ SUch that? (2)>W(Z7) for each configuratior® in A that

. . # . . #
for which the cross sections are circular with an invariantS N0t equivalent a2 and is accessible froiz™ by a ho-
motopy compatible with the constraintd.ack of equiva-

diameterD. The two important parameters for the calcula- - . e
tions we present are and lence means that the two configuratio®s’ and 2, differ in
distribution of twist density or are such that the correspond-
d=DJ/L. 7) ing curvesC* andC, are not congruent, or both.
As we remarked in paper |, our definition of stability, as it
We assume that no external forces act on the plasmitequires that¥ have a strictocal minimum, differs from a
under consideration, and that disjoint subsegments of theoncept of stability often used in physitsee, e.g., Re{3])
plasmid can interact only through contact. We assume furwhich, in the present subject, would requie to have a
ther that when such contact occurs, the contact forces a@obal minimum, i.e., to not exceed its minimum value for
normal to the surfaces of segments involved and moment&ny other configuration that may be reached by an arbitrarily
are not exerted at points of contact; hence changes in cofarge variation compatible with the constraints. A configura-
figuration do no work against the contact forces. tion that is stable according to our definition but does not
A configuration is called amquilibrium configurationif ~ give a global minimum to the appropriate energy would be
SV, the first variation of¥", vanishes for each variatiofZz  called “metastable” in other contexts.
in configuration that imdmissiblen the sense that it is com- ~ When a configuratioi®* is a member of a one-parameter
patible with the imposed constraints, which include the refamily E of equilibrium configurationsZ for which one can
quirement that such topological properties as the value ofake AL, A7, and¥ to be given by functiona\ £F, AT,
AL and the knot-free state ¢f be preserved. andWE of W, as in bifurcation diagrams presented here and
In the units employed for Eq$l) and(2), those equations in paper I,Z*# is stable only if the slope of the graph AfC
imply that the resultant moment on the cross section withversus)V for E is not negative ag*®. Thus the relation
arc-length parametesis

0

in which t(s) is the unit tangent vector faf, andx(s) is the
location in space of the point dhwith arc-length parameter
S.

dA £Edw=o, (10
M(s)=t X EJFQ,AQL (8) which we call theE condition is a necessargbut not suffi-
ds ciend condition for stability.(This condition, derived in pa-

I , . . per | under assumptions more general than the present, was
In an equilibrium configuration of the plasmid, at valuessof obtained in a different form in a seminal paper by Le Bret
other than those characterizing points of self-contiits) [2])

and the resultant forcE(s) obey the equations On a cautionary note we mention, as we did in paper I,
dE dM that there are exceptional families of equilibrium configura-
— =0, — =Fxt. (9)  tions for whichAL is not determined by)V, because, for
ds ds them, equilibrium is maintained wheX. is changed withC
kept constant. Such is the case for those configurations of a
plasmid in whichC is a true circle, i.e., the configurations
that form the “trivial branch,” which is labeled in the

These two balance equations, with as in Eq.(8), yield a
system of equations faf and AQ) which can be solved in
terms of elliptic functions and integrals for a subsegmenty rcation diagram shown in Fig. 1 below.

between points of self-contacsee, e.g., Refd4] and[6]). An equilibrium configuration inE for which the excess
Each such solution is determined by six solution parametersyis densityAQ vanishes remains an equilibrium configu-
A plasmid withn points of contact hasr2contact-free sub- 4o when the plasmid is nicked, i.e., when one of its two

segments, and hence its configuration is determined Whegna strands is severed. In paper | it is shown that a
12n solution parameters are specified. The condition of Prestrengthened form of the relatida0), namely

assigned\ £ and equations rendering precise geometric con-

straints at contact points and laws of balance of forces and dA £E1dw=1, (11
moments at those pointge., Eqs.(44) and(45) of paper )

yield 12n equations which can be solved to calculate thecalled the ncondition is a necessary condition for an equi-
solution parameterisl1]. In this manner we obtain thgon-  librium configuration inE with AQ)=0 to be stable both
stan} value of AQ) and a precise analytic representatiorCof before and after nicking.

for equilibrium configurations in which self-contact occurs at  In order for an equilibrium configuratiog * to be stable,
a finite number of points. The closed form expressiongfor it is necessary that, for eachbetween 0 and., there hold
yield formulas that greatly facilitate calculations both of the 8(¢)=0, wheref(¢) is the slope of the graph & £ versus
elastic energy? (cf. Ref.[5]) and of the integral along of WV for the family of equilibrium configurations of the plas-
the geometric torsiofcf. Ref.[6]). Once the torsion integral mid that containsZ* and is subject to the additional condi-
is known, the writheWy of C is determined to within an tion that the subsegment with=s<L be held rigid[For the
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formal definition of 8(¢) see Eq.(29) of paper I] In the  rod obeying the special case of Kirchhoff's constitutive rela-
present paper we shall show that this condition, which wagions in which the rod is assumed to be not only both inex-
derived in paper | and there called tBecondition can fur-  tensible and kinematically symmetric, but also of circular
nish a practical method of demonstrating that certain concross section. Without dwelling on the obvious limitations of
figurations that obey thE condition are in fact unstable. ~ such a model as a representation of a true DNA segment, we
In order for an equilibrium configuration to be stable it is should like to make two cautionary remarks about the appli-
necessary that the curderepresenting the duplex axis give a cability of our results that touch on matters other than the
strict local minimum to the bending ener@yg in the class lack of homogeneity and axial symmetry in actual DNA seg-
of curves that obey constraints and have the same writhe 48€nts:
C. This W condition like the 6 condition, can yield a method (i) Since the value ol employed in our calculations cor-
of further testing the stability of configurations known to responds to approximately 2.5 persistence lengths under nor-
obey theE condition. mal experimental conditions, we do not claim that the con-
Arguments given in paper | show that strengthened formdigurations we calculate would be free from fluctuations, or
of the E condition and théV condition can be combined to that for them one can set differences¥nequal to differ-
obtain a conditiorsufficientfor stability, called the Sondi- ~ ences in the free energy of supercaoilitt§or calculations of
tion, which in the present context may be stated as followsthe free energy of supercoiling for miniplasmids see, e.g.,
An equilibrium configuration Z* in E is stable if Refs.[18-22)
dALE/dW=>0 at Z* and, in addition, curve2(Z*) has a (i) The calculations we report do not account for the ef-
neighborhoodV such that for eactg* in the family E with  fects of electrostatic repulsion. To do so in an approximate
writhe W* close toW?*, there holds¥z((C)>WgCOV*))  Way, one may conS|der_repIaC|ng ttm/eragéa_“geometrlc”
for every closed curvé in A that has writhe\* and is not ~ value ofD by an “effective” value, sayDf, with f>1 (see,
congruent taC(OV*). e.g., Refs[23]_ and[24]). When electrostatic effects are ab-
In the next section of the paper we present calculate§ent, calculations of the type we have performed for plas-
equilibrium configurations for plasmids and applications ofMids of sizeN and (geometrig cross-sectional diameté
the criteria just stated. The configurations and bifurcatiorr® applicable to plasmids of si2& with diameterDf. Equi-
diagrams shown were obtained using the generalized methdrium configurations for specified values AfZ remain es-
of explicit solution. The basic parameters in our theory aresentially the same under such rescaling; i.e., cdhwmnder-
d=D/L andw=C/A. For the cross-sectional diamerof = 90€s a similarity transformation with scale factfrthe
DNA we employed 20 A, and we choseto be the length of ~ €XCeSS twisﬁf(as well as the.writhMJ) remains invariant,
a segment for which the numbarof base pairgbp) is 359 ~ and the elastic energy (in units of kcal/mole changes to
(i.e., L=359x3.4A). Whenw and the configuratioor, ¥ =W/f. One may hope that if one choosepudiciously,
equivalently, the solution parameterre known, the equa- One can obtain, frqm calcu!atmns that ignore elect.rostauc
tions of the theory enable us to calculdte W, andW, in  forces, useful, albeit approximate, values of properties of a
units of A/L (cf. Eqs.(19)—(20) of Ref.[5], which are easily Miniplasmid of sizeNf and geometric diameteD that is
evaluated expressions fdf, W, and Wy in terms of solu-  Subject to electrostatic effects. _ _
tion parameteds To express our reported values f and In Appendix A we discuss an illustrative example which
Vg in kcal/mol, we needed a value fok we choseA shows that, once one is able to find all the equilibrium con-
=2.058< 10 2ergnm, which corresponds to a persistenceigurations in a given region of theA(, W) plane, or,
length of 500 A at 298 K(cf. Ref.[13]). equivalently, in the('p, AL) plane, one can find lower
Although we have in hand an easily applied rule for transPounds for energy barriers for the various pathways by

forming the bifurcation diagrarfpresented as a graph AfC which a transition at fixed £ from one(locally) stable state
versus)V) for one value of into the bifurcation diagram for to another stable state can be realized. We remark there that

another value of» [Eq. (40) of paper I, and we do describe b_efore the estimate of act.ivation energy \{vhi(;h that example
the way in which the stability of equilibrium configurations Yiélds can be accepted with confidence, it will be necessary
depends onw, we have chosen to present diagrams with to resolve an open problem mentioned in the last paragraph
set equal to 1.5, a value that corresponds to the very high erff Sec. Il.
of the range of experimental results 161{14,15, because it
is only at high values ofv that there are ranges &£ in ;" coNFIGURATIONS AND BIFURCATION DIAGRAMS
which stable nonplanar contact-free configurations oéciur
Juicher [3]). The low end of the range of experimental de- For each pair {l,AL£), a plasmid has at least one, and
terminations ofC yields 0.7 forw [16,17]. Section Il con- usually several, equilibrium configuratiorisee, e.g., Refs.
cludes with a figure showing how the class of stable configu{2] and[3]). As AL varies at fixedN, these configurations
rations forow=1.5 differs from that foro=0.7. vary and form families of equilibrium configurations. We
Here, as in paper |, our calculations are intended to illusfocus our attention on groups of such families, also called
trate a method of investigating the elastic stability of con-branches that contain configurations with three or fewer
figurations, not to argue that specific valuesewbr D are  points of maximum curvature and that are connected to a
appropriate for the ratio of the elastic moduli or the effectivebranch, called thérivial branch, which is made up of the
diameter of DNA. configurations for whichC is a circle. In the figures that
The results we present in Sec. Il have been obtained witkrivial branch is labeled, and is shown as a dotted line.
rigor and precision in the theory under consideration, namel\Branchese and 8, which originate at a bifurcation point of
that in which a DNA segment is modeled as a homogeneouthe trivial branch, are shown as heavy solid lines and are
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FIG. 1. Bifurcation diagram for a protein-free DNA plasmid FIG. 2. Graphs of bending ener@g versus\V for branches of
with N=359 andw=1.5 drawn as a plot oA £ versusW. Shown the bifurcation diagram of Fig. 1.
as a dottedvertica) line is the trivial branch’; two branchesg and
B, resulting from bifurcation of are shown as heavy solid curves; tion that the force vectoF is independent o, an assump-
four branchespB,, By, By, and B,y , arising from secondary bi- tion valid when self-contact does not ocguie find that for
furcations ofg3, and one tertiary branchj emerging fromg,, are  eachm=2, the symmetry group of all configurations in the
shown as light solid curves. primary branch with indexm is the dihedral grou,, of

order 2m. Hence, whether or not self-contact is present, the

calledprimary bifurcation branchesBranches that originate cyrve( for a configuration on the primary branch of index
at bifurcation points of a_primary bran¢and hence are con- has a singlem-fold symmetry axis that is perpendicular to
nected tof by a single primary brangtare calledsecondary  the planeP containing the 2 points at which the curvature
bifurcation branchesin the figures the secondary branches,. of ¢ has a local extremuni.e., a maximum or a mini-
have labels that bear subscripts, e, B ,..., and are  mym). Each of thanlines that intersect the+-fold symmetry
shown as light solid curves. fertiary bifurcation branch  gxis and pass through two extremarois a twofold symme-
By, that originates at a bifurcation point of the secondarytry axis.
branchg,, is also shown as a light solid linsee Fig. 1 It is clear that on the trivial branch’ there holds

Since the(protein-free and knot-freeplasmids we con-  dW/dAL£=0, andAL, A7, and¥ are not given by func-
sider have a symmetry such that for equilibrium configurations of 1. Although the theory of th& condition andé
tion the transformatiol L— — AL takes)V into =¥V and  condition is not directly applicable to configurationstirone
leaves¥ unchanged, we tak& L to be positive. can show that those circular configurations are stable when

When AL is less than a critical valuey£*, a miniplas- AL is less tham\ £¢, and unstable when £ is greater than
mid has just one equilibrium configuration and it belongs toA £¢. (A formal proof of this assertion is given in Appendix
. In the present caseN(=359, w=1.5), AL*=1.029 and B)
there are two equilibrium configurations withC=AL*: In Fig. 2 we give graphs o¥ 5 versusWy for the branches
one is inZ, and the other, withh* =0.927, has a single point of the bifurcation diagram of Fig. 1. The utility of such
of self-contact and corresponds to the pa¥iton branche.  graphs for investigation of the stability of calculated equilib-

Each point of¢ for which rium configurations of plasmids was noted by Le B2t
Arguments given in paper | imply that here, on each non-
AL=w *Ym?’—1, m=234..., (12)  trivial branch,
is a bifurcation point at which a family of solutions with d¥g/dW=4m2wATE. (13

W+ 0 intersects, i.e., at which a primary branch originates __ . . _ .
[25]. We call the integem in Eq. (12) the index of the This relation, which follows from Eq(20) of paper | with

primary branch. The first such bifurcation gfoccurs at P =0 [see also Ref9], Eq.(5)], tglls us that the data in Fig.
AL=AL%= w3 and gives rise to branch which has an 2 determinA L as a fl_mct|0nA£ , of W, i.e., Fig. 1 can be
index of 2; the second occurs AtL=ALf=w 12v2 and econstructed from Fig. 2.

gives rise to the branch which has an index of 3. We note  AS the configurations i have zero writhe and bending
that AC* is the smaller of the two numberdaZ® and €Nergy 272 (in units of A/L), the trivial branch reduces to a

AL(AY), where A is the configuration of minimum writhe single_ point ir_' Fig. 2. It follows from Eqs12) and(13) thz_it :
which (i) lies in the branchy and(ii) is such that the plasmid the primary b|furcat|0p branches correspond to curves in Fig.
has a point of self-contact. 2 with initial slopes given by

A list of possible symmetry groups of contact-free equi- dwE
librium configurations of closed elastic rods witiC# 0 was B =472 m?—1. (14)
given by Domokod26]. (His analysis rests on the assump- dw W=0
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(@ (b)
_ 20+
:
g FIG. 3. Graphs oA L versus)V, and¥ ver-
Q > 184 susA £, for branches and«. The configurations
< corresponding to point® and @ are shown in
104 Fig. 4.
5_
T T T T T T v T T T
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A configuration that minimizesl'g in the class ofequi-  but changes sign. As the branch traverses the poihimnél
librium configurations with a given writhe also minimizes X, the corresponding configurations either gain or lose sta-
Vg in the class ofall configurations with the same writhe. bility; such points are callegoints of exchange of stability
Hence, the calculations that gave us Fig. 2 tell us that foSince, in the present cast/ is a(strictly) increasing func-
each writhe the global minimum o¥g at that writhe is  tion of WW between A and X, and between ¥and A, but is
attained by a configuration in braneh a decreasing function between X and, Ahe configurations

Details of the graph of\£ versusW for brancha are  in a with W either between its values at’Zand X, or be-
shown in Fig. 8a). Forn=0, 1, 2, and 3, the configurations tween its values at Aand A" are stable, and those with’
with n points of self-contact correspond to points on thatbetween its values at X and*/re unstable.
graph between Aand A"*! and form smooth families of The configuration A (at which & branches off fromy),
equilibrium configurations. As we know that the branelis  the configuration X(which lies in « between the circular
a locus of configurations that minimi2#g at fixedV, we  configuration & and the “figure 8” configuration A and
can apply the S condition and assert that a configuratian in which hasdA £/dW=0), and the configurations‘A.., A*
is stable if(and only if) it obeys theE condition. Although are shown in Fig. 4. Each of these configurations bas
dA £/dW suffers a jump at the points"Ain the present case symmetry, i.e., has three twofold symmetry axes, two of
the right-hand and left-hand derivatives are positive &t A which lie in the planeP. As AL increases, the number of
and A%, and hence the configurations corresponding to thosself-contact points in a configuration on the branehn-
points are stable. At A dA£/dW has left- and right-hand creases in the sequence 1, 2, 3, uAtil attains its value at
derivatives that have opposite signs; at the point X, shown a&*. (For the values of» andD/L employed here, that value
a solid circle in Fig. 2, the derivativéA £/d)V is continuous  of AL is 2.521) A configuration withA £ near to, but greater

A° X Al 2 3 4

_____________

'

AL 1.155 1.163 1.029 1.937 2.408 2.521
w 0 0.186 0.927 1519 1.959 2.056
AT 1.155 0.977 0.102 0.418 0.449 0.465
¥ 14.37 14.49 13.66 18.86 21.71 22.46

FIG. 4. As explained in the text, configurations at X antlake points of exchange of stability, and for eaghA" is the configuration
of smallest writhe in brancl with n points of self-contact. Here, as in Figs. 6, 8, 9, and 11, the following conventions are employed: the
top row shows the projection @ on planeP with the twofold symmetry axes if®, drawn as dashed lines. The bottom row shows the
plasmid depicted as a tube of diameter 20 A viewed at an angle of 75°Tioe scale is constant in each row, but is reduced in the top row.
¥ is given in kcal/mol.
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(b)
60
E 50 FIG. 5. Graphs ofA £ versusW and¥ versus
2 ] AL for branches, B, B, By, and 8. The
= 404 configurations corresponding to poirits A, and
;]1 B 30_" [0 are shown in Figs. 6, 8, and 9. Branghis
| shown as a heavy solid curfeith kinks at B
20 and B) and brancheg,, 8, and 8} as light
] curves(with kinks at & and E).
] , 10
0_ v d ...
T T T T T T T T T T T
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w AL

than, 2.521 has two isolated points and an interval of selfbranch{ and branchy contain stable equilibrium configura-
contact; for such a configuratior, attains its minimum at tions with the same\ £, or (ii) brancha contains two such
the two values ofs corresponding to the midpoint of the stable configurations. The values®fN, andD which yield
interval of self-contact. Fig. 3 are such that botf) and (ii) can occur(for separate

The value of\V corresponding to point X is sensitive to ranges ofA £). We have found that for the present value of
w. Had we here putv=1.4, as we did in a discussion of d, (i) occurs whenw<1.707 andAL(AY)<AL<AL(A
mononucleosomes in paper |, the interval betwefmdd X ~ =AL% and (i) occurs when 1.3 »<1.993 and
would have been too small to show clearly in Fig&)3and ma{AL(AY,ALY]<AL<AL(X). When »>1.993, for
3(b). Recent calculations discussed below show that wheeachA L there is precisely one stable equilibrium configura-
0=1.375(.e., whenw=3%), dAL/dW=0 at point £ on  tion in the union of branches and «.
brancha, and hence points Pand X then coincide. Thus, all Perhaps of greater importance than the observations just
of the nonplanar contact-free configurations on branclre = made, at least for those concerned with topoisomer distribu-
unstable ifw=1.375. In addition, we have found that when tions, is the fact that there is a range of (which is w
w=1.993, points X and Acoincide, which implies that all <1.600 for the present value af) such that for a small
the configurations on branch are stable ifo>1.993. Be- interval of values ofA £ bounded above b\ L® there are
cause configurations%and X do not show self-contact, but not only two stable configurations, one inwith a single
the configuration Adoes, the value ab for which X and £  point of self-contact, i.e., a “figure 8,” and the other iy
coincide is independent of the plasmid size and crossbut, in addition, the “figure 8” configuration hdewer elas-
sectional diameteb, but the value ofw at which X and A tic energy than the circular configuratiofee also Le Bret
coincide depends on the ratib=D/L. [2], Tsuru and Wada{i29], and Jlicher [3].)

With the exception of Refl2], the literature on bifurca- The graph ofAL versusW for B, which branches off
tion branches in the theory of the elastic rod model forfrom ¢ at B’ and has index 3, is shown in Figs. 1 an@5
protein-free plasmids deals primarily with braneh Some  The configurations i3 have B, symmetry. Those between
relevant recent papers are those ofcher [3], Yangetal. B and B' are contact-free, those betweeh &d B have
[27], and Westcotet al.[28]. Juicher[3] modeled a plasmid three points of self-contact, and those WAL greater than
as an impenetrable rod with zero cross-sectional diametdsut close to its valué€4.653 at B? have six points of self-
and considered a configuration stable only if it gives a globatontact.(See Fig. .
minimum toV at fixedA L. If one identifies the configura- For each branch that bifurcates frafincluding branch
tions that Jlicher refers to as “interwound” with those ia pB) there is an interval of values o1 containingV=0 for
that show two or more points of self-contact, and takes intavhich the corresponding equilibrium configurations are
account differences in assumptions about the diameter afontact-free.(In fact, all nontrivial contact-free configura-
cross-sections, then his, A £)-phase diagram and observa- tions are in primary bifurcation branchgdVe have found
tions about the dependence Whof ¥ for configurations in  that the contact-free equilibrium configurations in primary
a become compatible with the results shown here in Figs. 2branches with indexn>2 do not obey the condition and
3(b), and 12. Yanget al.[27] and Westcotet al.[28] present  hence cannot be stable, even if they obey Eheondition.
not stability analyses but numerical calculations. Yanhgl. (See, for example, the graph é{¢) versusé/L shown in
[27] developed a finite element method in which self-contactrig. 7 for the configuratiord, which does obey th& con-
is taken into account by introducing a penalty function.dition.) It follows that a protein-free plasmid can have non-
Westcottet al.[28] employed a finite difference method and planar stable equilibrium configurations that are contact-free
accounted for the excluded-volume effect that arises from anly if ®>1.375, and if such configurations occur, they must
Debye-Hickel-type electrostatic repulsion. Each of the citedbe in a. This conclusion is stronger than a result of Le Bret
papers contains examples of calculated configurations witf2] to the effect that for such a plasmid to have stable, non-
evident B symmetry. planar, contact-free configurations it is necessary hatl.

There are ranges ab (with upper bounds depending on  Let w,, be the value ofv for which the branch that bifur-
d) for which there are values af £ where either(i) both  cates from with index m is such thadA £/dW=0, at the
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FIG. 6. Selected configura-
tions in the branchg. B" denotes
the configuration of smallest
writhe in 8 with 3n points of self-
contact. Shown are B B!, and
B2 The configurations at points F
and G would remain in equilib-
rium if the plasmid were nicked; F
is unstable; G is stable and would
remain so after nicking. P is the

AL 1.886 11883322 11';?82 1199:77 23;322 ;‘56253 configuration at the point of sec-
w 0 ' ‘ ’ ) ’ ondary bifurcation.

AT 1.886 0 -0.156 0 1.170 1.133

¥ 30.33 32.06 32.11 31.89 50.10 62.07

point whereW=0. If o>w,,, then there are contact-free W=0.5,AL=1.975, and is shown in Fig. 8, whetg de-
configurations in the branch with index obeying theE notes the distanc€32.8 nm between the two points of ex-
condition, but ifw<w,, there are no such contact-free con- trema of curvature o€ that lie on the twofold axes of sym-
figurations in the branch. Applying the explicit solution metry for U. We have constructed a one-parametetset
method for contact-free equilibrium solutiofid—6] to an  configurations U of the plasmid such that each configura-
analysis of solutions near to the circular solutions with, ~ tion in H yields 5% =0 for each variation irC obeying the
as in Eq.(12), we have found that, to within eight significant constraints thati) C has a twofold axis of symmetryii) W

figures forw,,, stays at its value in the configuration Uii) the distance
between the points on the symmetry axis is
wm—1=3/(2m?). (15 q=(1—7)go. The members oH with »=0.05, 0.2, and
0.668 are shown in the figure. Clearly, U is kh with »
In particular, v,= 5 and, as stated above, >3, the =0, and the variationdZ2),, that takes U into Y’ has W

interval of points ina corresponding to stable equilibrium =0. In the present cas®,z(U?)<W¥(U) for eachy#0, no
configurations is not empty(For m>2, if w>wy, the matter how small. The configuration*Ucorresponding to
branch with indexm will have an interval with contact-free 7 =0.668) is an equilibrium configuration of the plasmid and
equilibrium configurations that obey tiiecondition, but, as it lies in brancha.
we have noted, are unstable. We now turn to the configurations j8 with self-contact.
Since the value of» that we are using exceeds;=¢,  Such configurations have loops. For rods and ropes the con-
there is an interval of writhe values, which in the presentcept of a loop is intuitive. DNA segments, such as the sub-
case is B2/<0.900, for which the configurations iiare  segmentD' of a miniplasmid in a mononucleosonfef. pa-
contact-free and havdA£/d)V>0. For 0.906<WW/<1.948  per |), that are subject to constraints that keep endpoints in
(where 1.948 is the writhe of B, dA £/dW<0. Because all proximity are often called loops, even if free from self-
the contact-free configurations fhare unstable, the point in contact. Here, when we call a subsegment of a protein-free
B whereY/V=0.900 isnot a point of exchange of stability.  plasmid a loop, we presuppose that its ends are in contact. At
We have remarked that the contact-free configurations igufficiently large values of the writhe, a loop shows self-
B fail to obey thed condition. One also can show that those contact not only at its end points, but also in its interior. It is
configurations do not obey thé’ condition by constructing in agreement with current usage to call a loop with more than
admissible variations witlhV=0 that lower¥y. Consider, one self-contact glectonemic loopor, for short, aplec-
for example, the configuration labeled U in Fig. 5 which hastoneme

U G

FIG. 7. Graphs o# versusé/L for configura-
tions U and G in branclg that, as seen in Fig. 5,
obey theE condition withdA £/dW strictly posi-
tive. The plasmid is contact-free in configuration
o U and has three points of self-contact in G. In
both cases§— = asé—0". For G, 6(£)>0 for
all 0=¢<L; for U, (&) vanishes at two values
of & and there are two singular values &f
(U R (marked with vertical dotted lingsat which 6—
+o from the left and—< from the right.

204
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U(O.OS) U(o.z)

FIG. 8. The configurations & are the result
of special deformations of Udescribed in the
text) that change the distance between poiats
and b from qq to (1—%)qgq while keepingW
fixed. It turns out that this one-parameter set of
deformations lowerdl .

.
>

n 0 0.050 0.200 0.668
W, 16.89 16.77 15.47 11.30

When AL exceeds its value at'Bthe configurations in points in B, between B and B, In this notation, points
the branchf have three congruent loops. Betweeh &d B! and B} are the same as poinfBnd hence are labeled B
B . each such loop has. one point of self-contadttits end— and points % and Blv are the same as point P.
pointy. For W (or, equivalently, forAL) greater than its The secondary brancl, has a bifurcation poin§ at

value.at B, these loops are plectonemes. . . which a tertiary branchg}; , originates. The configurations
Points B and P are points of secondary bifurcation. At. . . i .
BL the point ong with the smallestAZ for which self- in B); have no dlscernlb_le symmetry; each contains two non-
contact occurs, branche8, and B, originate. Two other congruent Ir?.?psr'] As)/\r/] INCreases, ontiﬂloop gec‘:‘gmes plec-
branchesp,, andg,,, originate at P. Although, as we have tonemic, w !e the other flppears” to © atter{br _become
remarked, the configurations i have (in accord with the more planar) as well as “tighten” (or increase in bending
known properties of primary branchesne threefold sym- en(zgy r(]see F.'g'F?' h hs ofAL ¢
metry axis and three twofold symmetry axes, those inb Shs own in Fig. %), Ehe ?rzgcs_?/v T\;]ersus)?/ or_
B,— B, have a symmetry corresponding to groupaEorder ranchesB, S, By cross the lineAL=)V. The configura
2, i.e., have only a single twofold symmetry axis and it is
unique.(See Figs. 9 and 11 The configurations ir8, have
one loop which, as\£ increases above its value af,Boe-
comes plectonemic. The configurationsdp have two such
loops, which are congruent. The configurations@ and
B have three loops, of which one intersects the symmetry
axis and the other two are congruent. gy, , the loop that
intersects the symmetry axis becomes plectonemic wiven
increases above its value aﬁlBIn B, the two congruent
loops become plectonemic wh&W increases above its value

at Bi,. In each case that we have studied, the number of AL 2872 1.792 3.780
self-contacts in a plectonemic loop increases in the sequence w 2115 1.948 2.851
1, 2, 3, with an interval of points of self-contact occurring at AT 0757 -0.156 0-929

higher AL. (Such is the case also for the extranucleosomal ¥oooae szl 3169

loop of miniplasmids in mononucleosomesee paper)land
for plectonemic loops in linear DNA segments subject to
tension and torsional momert¥1].) ;
When we say thaB,, B, Bu,» andgB,, “originate” at a A
secondary bifurcation point, i.e., are “secondary branches” ‘
that “branch off” from the primary brancl8, we employ a U0
terminology that follows a natural convention: if, as a param-
eter (e.g., AL or W) is varied, a primary branch enters a
point and several other branches exit from the point with
precisely one of the exiting branches having the symmetry
properties of the primary branch, we consider the branch that

exits with the original symmetry to be the continuation of the AL 3.352 3.685
primary branch and the others to be secondary branches that w 2.205 2.860
originate at the bifurcation point. AT 1.147 0.824
The notation we used in Figs. 5-11 when we labeled ¥ 4475 48.18
points B, B, B? B, etc., has the following property: The  Fig. 9. Shown here are:Bthe configuration of smallest writhe
configurations in each brang@y, (whereg, stands for3, 8, in g, with two points of self-contact; § the configuration of small-

Bu, Bu, B) that show at least one loop with self-  est writhe ing, with four points of self-contact; S, the configura-
contacts, but no loop witpp+1 contacts, correspond to the tion at the point of tertiary bifurcation o8, ; and B, the con-
figuration of smallest writhe i}, with four points of self-contact.
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(b)

FIG. 10. Graphs oA £ versusW, and¥ ver-
susA L, for branches, B,,, andB,, . The con-
figurations corresponding to poin€3 are shown
in Fig. 11.

¥ [keal/mol]

tions corresponding to those crossing points would remain irconfigurations that do obey th& condition, we conjecture,
equilibrium if the plasmid were nicked. Such points onwith as yet no formal proof, that satisfaction of theondi-
branchp are labeled F and G and markédin Fig. 5a). At  tion is not only necessary, but also sufficient for stability of
F, dA£/dWwW<1, and hence the corresponding configurationan equilibrium configuration of a plasmid. Consequences of
is unstable. Since point G lies betweeh &d P, the con- this conjecture of sufficiency of the condition for stability
figuration corresponding to G obeys theondition(see Fig.  of configurations of plasmids will be studied in Appendix A.
7) and, since it obeys the conditiahA £/dW>1, if it is  We consider the development of methods of proving or dis-
stable, it will remain so when the plasmid is nicked. proving the validity of the conjecture to be a major open
Analysis of the stability of configurations in branch@s  problem in our subject. To give some idea of the importance
Bi—Bw , andB; requires care. By using thgcondition, we  of the problem, we remark that, if the conjecture is correct,
can show that not only the contact-free configurationgin then configurations corresponding to points of the heavy
but also all the configurationsvith self-contact pointsthat ~ solid curves in Fig. 12 are stabl@ the sense that they give
are inB,, By, or Bf, or are inp with W greater than its 10 W strict local minima in the class of configurations with
value at P, or ing,, between P and B, or in 8, between P equalAL), but, until the validity of the conjecture is estab-
and Bzv are unstable, whether or not they obey Eheondi- lished, we can assert Wlt_h absolute certalr]ty only tha.t the
tion. The remaining configurations, namely thosedrbe- segments of branches which are drawn as I_|ght curves in the
tween B and P, those ir8,, with W greater than/V(Bﬁ| , figure are composed of unstable configurations and the seg-
and those ing,, with W greater tharW(B,zv), obey thed ments of the branches and « drawn as heavy curves are

condition. Verification that the S condition holds suffices tocomposed of stable configurations.
prove stability, but such verification usually is not easy, be-

cause fOI’. e_qumbrlum .C(_)nflguratlons other than those on the ACKNOWLEDGMENTS
branche it is a very difficult matter to prove tha¥z has a
(local) minimum at fixedW. This research was supported by the National Science

Our experience indicates that whenever an equilibriumFoundation under Grant No. DMS-97-05016 and the U. S.
configurationZ# of a plasmid fails to obey thé condition,  Public Health Service under Grant No. GM34809. D.S. ac-
we can find a counterexample showing ti#4t does not give  knowledges support from the Program in Mathematics and
a strict(local) minimum toWg at fixed)V (see, e.g., Fig.)8  Molecular Biology at the Florida State University with fund-
As we have not been able to find such counterexamples fdang from the Burroughs Wellcome Fund Interfaces Program.

2 3
B By
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B’ B

111 111 P

FIG. 11. Selected configura-
tions in branche®,, and B,y .

AL 4.000 3.625 3.972 4.124 4.999
w 3.125 2771 2.802 3.139 3.861
AT 0.875 0.854 1.170 0.985 1.138

¥ 49.48 44.95 50.10 52.62 65.62
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(a) (b)

N=359bp, D=20A, 0=15 N=359bp, D=20A, ©=07

FIG. 12. Graphs ofV versusA L for the vari-
ous primary and secondary branches discussed in
this paper. Light curves: configurations that do
not obey they condition and hence are not stable.
Heavy curves: configurations that obey theon-
dition. As the configurations of the branehfor
which AL exceeds its value at%\(open circlé
have intervals of self-contact, they were com-
puted by an extension of the explicit-solution
method employed here and in paper | for configu-
rations showing only a finite number of points of
self-contact.

[=2]
o
1

¥ [kcal/mol]
s
<

Y [keal/mol]
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APPENDIX A: minimum AW #(A£) of differences betwee®W (B(AL)) and
TRANSITIONS BETWEEN CONFIGURATIONS ¥ at unstable equilibrium configurations with the same.
Figure 12 contains graphs @f versusAZ for fixed val- ~ We find that, asAL varies overJ, the maximum value,
ues ofN andD, and two values ob=C/A near the extreme AW, of these lower bounds\ W *(A L), is attained at £
points of the range ab that has been reported as compatible=AL"=3.282 foro=1.5, and atA£'=4.335 forw=0.7.
with experiment. In each case there is a critical valg® of ~We here focus our attention on the transitionsAB()
AL such that each configuration in branetgives aglobal —A(ALY).
minimum to¥ whenAL>AL® (atw=1.5,AL£°=1.123; at For bothw=1.5 andw=0.7, whenAL=AL", there are
w=0.7,A£°=1.848) and there is an intervalof values of  four unstable equilibrium configurations close toAB("):
AL>ALC for which there are two configurations that obey one on each of the secondary branch®s, 3, , and two on
the 6 condition: AAL) in « and BAL) in . the tertiary branclg} . These are labeled, BBy, Bfiy), B
In this Appendix we discuss matters that can be regardegh Fig. 13. Forw=1.5 and 0.7, the lower bound of the height
as extrapolations of results given in the text, and that suggegl the energy barriers av 2T, i.e., APT=AT#(ALY), is

routes by which one may seek to extend the present theory tQ-ined on two paths, one taking B to A through Bnd the

the point where it permits treatment of the kinetics of tran- ., . taking B to A through By. (For w=1.5 Apt

sitions between locally stable configurations. If we assume_g yo c2imol or 5.6ka T per moll)e;cule afl'—3i0’K' for
- . . B - y

the validity of the conjecture of sufficiency of tiecondition ©=0.7, AW =3.29 kcallmol or 5.%, T.) These, as well as

for stability of equilibrium configurations of plasmid80], o . . ; :
then, for each\Z in .7, the configuration BAZ) gives a local transition paths from B to A involving the configurations B

minimumW(B(AL)) to ¥, and it becomes meaningful to ask @d B, and hence with energy barriers higher than
questions about the activation energyP’ for a transition AW *(AL") (albeit less than 1/Rg T higher in the case of
from B(AL) to A(AL). A familiar “mountain pass theorem” the path B—>B}*(2)—>A) are depicted in Fig. 14.

then tells us that, for a giveAL in 7, AV is no less than the The total decrease i for the transition B~A at AL is

(a) (b)

FIG. 13. Graphs oA £ versusW and¥ ver-
sus AL for w=1.5. The configurations corre-
sponding to point© haveA £=A£'=3.282 and
are shown in Fig. 14. The corresponding graphs
for @«=0.7 have the same structure with, of
course, a change in £t and the values ofr at
B,, By, Bﬁ<l), Bﬁ(z), and A.

¥ [kcal/mol]
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FIG. 14. Transition diagram for configura-
tions with ©=1.5 and AL=AL7=3.282. The
configuration labeled A is that which minimizes
¥ in the class of configurations withL=ALT,

B is a locally stable configuration i, and B,

Bui, Bl Bii(2 are unstable equilibrium configu-
rations. The numbers above the arrows indicating
the direction of transitions give the corresponding
increments if¥ (in units ofkg T). An analogous
diagram holds fore=0.7, which yieldsAL"
=4.335, increments ik as shown in parenthe-
ses, and configurations B,,B3,, B,’j(l), Bﬁ(z) and

A that (with the scale and lines of view em-
ployed are nearly indistinguishable from those
shown here.

19.4kg T for w=1.5 and 20.%g T for @=0.7. Our calcu- figuration, Egs. (2) and (4) yield ¥/=272w(AT*)?

lation of the configurations AXL") and their energies for =272w(AL%)2.

cases in which self-contact occurs in intervals required an We suppose first that-OAL#*<AL*. Let Z be a con-

extension of the method used elsewhere in the paper. Miguration that is not equivalent t8# and is in an appropri-

forthcoming paper will deal with explicit representations of ately chosen neighborhood &% with AL(2)=AL*, and

equigbriunr Clonfigurations with i;ltervals of seh;-ﬁontag:t. let Z be the equilibrium configuration in branch with

The calculations summarized in Fig. 14, although give o . - .

for illustrative purposes only, suggest the following conclu?:/:(zf’)_t):x(‘?’ fanltlj henfc_:e W';WB(Z).IT]\PB(.Z)' In \I/levg

sion: although the valua\£" of AL that maximizes the € fact that, of all configurations with a given value-ol,
that for which AQ) is constant minimizesV;+, we have

lower boundAW¥ #(A L) for the activation energy for a tran- > >
sition from the branclB is sensitive to the value ab, that V1 (2)=27°wAT(2)" and, by Eqs(1) and (4),

; T #OA LTy i
maximum, AW "'=AW¥ #(AL"), is not. ‘I’(Z)—\I’#Z‘I’T(Z)—\I’#—-i‘qu(Z)—\Pg

APPENDIX B: STABILITY OF CIRCULAR = —4m?wA LW 2)+Vg(2)— 272
CONFIGURATIONS OF MINIPLASMIDS oM 2)?). B1)

The fact that for each specified value of the writhe the
bending energy¥ g of a miniplasmid is minimized on branch SinceC(Z2) is a closed curveWg(2)=272. If W(Z2)<O0,
a yields a straightforward proof that an equilibrium configu- then, becausé\ £>0, we haveW¥ (2)>W¥ # If W(2)=0,
ration Z# in ¢, i.e., with C* a circle, is stable if 0 then, we haveA £(2)=AL* andAT(Z2)=AT%, and in or-
<AL(Z*)<AL® and is unstable ifAL(Z%)>AL?, der for Z to not be equivalent t&#, it must be the case that
where, by Eq.(12), AL*=w» 3. That proof goes as fol- C(2) is not a circle and¥g(2)>2x2, which again yields
lows. W(2)>W¥*# For the remaining possibility, i.e}V(2)>0,

According to our definition, an equilibrium configuration we note that a3V*=0, the neighborhood af * in which Z
Z*# of a plasmid is stable if there is a neighborhoodt lies can be chosen so the¥(Z) is small and, by Eqs(12)
such that for each configuratiafi in that neighborhood that and (14) (with m=2) and the facts tha¥g(2)=2x2 and
hasAL equal toA£(Z%) and is not equivalent t&*, there W(Z)=WW(Z), we have
holds ¥ (2)>W¥(Z*). To prove thatZ* is unstable, it suf- ’
fices to show that in each neighborhood &f there is a

>\ 2 2 a 2
configuration 2T with AL equal toAL(Z%) and ¥(2T) Ve(2)=2m "+ 4T 0ALZ) +OM 2)T), (B2)

<w(z". which, when combined with the relatiaB1), yields
Let us writeAL*, AT# W# C* ¥ ¥ etc., forAL(Z7), ' aBl). y
AT(Z%), W(27), ¢(2%), ¥(27), etc. Of course, sincé” V(2) -V #=4720(AL~ AL#)W(Z) + OOM 2)?),
is a circle, W#*=0. In the units employed fo¥ g and ¥ in (B3)

Egs. (2), the bending energy of a circle is equal ter2

hence‘l’ﬁzZTrZ. Moreover, the bending energy of a circle is and hence shows that, if the neighborhoodZsf is chosen
strictly less than the bending energy of all noncircular closegmall enough, then¥(2)>W¥ # even if W(2)>0; this
curves. Since\() is independent o§ in an equilibrium con-  completes the proof thaZ# is stable whem\ £#< A L%,
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Suppose now thak £#>A £%. For each positive number
W', let Z be the configuration im with writhe W', and let
Z" be the configuration witlt(Z")=C(Z) that hasAQ in-
dependent o6 and such that £(Z")=A L [i.e., such that
AT(ZNY=AL*-W']. As W' -0, the configurationz" ap-
proachesZ*. By Eq. (2), ¥(ZN=272w(AL*~ W2
and the argument that gave (B2) here yields

Vo(Zh =272+ 472w A LW + O (V). (BY)

Hence,

BERNARD D. COLEMAN, DAVID SWIGON, AND IRWIN TOBIAS
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V(2N -V =271+ 20A LW + w(ALF-W)?)
—2m2(1+ w(AL*)?)
= —4m2w(ALF— ALYW +O(OW2).
(BS)

BecauseAL#>AL%, the right-hand side of Eq(B4) is
negative, i.e., ¥ (2" <W¥#* whenever W' is sufficiently
small.
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